首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   827篇
  免费   116篇
  国内免费   337篇
航空   970篇
航天技术   100篇
综合类   133篇
航天   77篇
  2023年   21篇
  2022年   17篇
  2021年   43篇
  2020年   35篇
  2019年   46篇
  2018年   43篇
  2017年   61篇
  2016年   92篇
  2015年   78篇
  2014年   54篇
  2013年   48篇
  2012年   67篇
  2011年   99篇
  2010年   52篇
  2009年   68篇
  2008年   56篇
  2007年   55篇
  2006年   39篇
  2005年   34篇
  2004年   27篇
  2003年   23篇
  2002年   19篇
  2001年   17篇
  2000年   29篇
  1999年   12篇
  1998年   16篇
  1997年   12篇
  1996年   16篇
  1995年   14篇
  1994年   15篇
  1993年   20篇
  1992年   13篇
  1991年   8篇
  1990年   11篇
  1989年   12篇
  1988年   8篇
排序方式: 共有1280条查询结果,搜索用时 0 毫秒
1.
《中国航空学报》2021,34(5):617-627
In this paper, a progressive approach to predict the multiple shot peening process parameters for complex integral panel is proposed. Firstly, the invariable parameters in the forming process including shot size, mass flow, peening distance and peening angle are determined according to the empirical and machine type. Then, the optimal value of air pressure for the whole shot peening is selected by the experimental data. Finally, the feeding speed for every shot peening path is predicted by regression equation. The integral panel part with thickness from 2 mm to 5 mm and curvature radius from 3200 mm to 16000 mm is taken as a research object, and four experiments are conducted. In order to design specimens for acquiring the forming data, one experiment is conducted to compare the curvature radius of the plate and stringer-structural specimens, which were peened along the middle of the two stringers. The most striking finding of this experiment is that the outer shape error range is below 3.9%, so the plate specimens can be used in predicting feeding speed of the integral panel. The second experiment is performed and results show that when the coverage reaches the limit of 80%, the minimum feeding speed is 50 mm/s. By this feeding speed, the forming curvature radius of the specimens with different thickness from the third experiment is measured and compared with the research object, and the optimal air pressure is 0.15 MPa. Then, the plate specimens with thickness from 2 mm to 5 mm are peened in the fourth experiment, and the measured curvature radius data are used to calculate the feeding speed of different shot peening path by regressive analysis method. The algorithm is validated by forming a test part and the average deviation is 0.496 mm. It is shown that the approach can realize the forming of the integral panel precisely.  相似文献   
2.
介绍某些战术导弹折叠翼快速展开特性测试技术。详细地介绍了测量方法、项目、数据处理和主要结果。试验是在北京空气动力研究所一座低速风洞中进行的。试验结果表明,获得的数据具有很高精度和可靠性,重复性也是令人满意的。  相似文献   
3.
简要叙述了在西北工业大学二元柔壁自适应风洞中利用面元法进行二元半机翼模型试验的研究情况,分析了面元法的基本思想和部分试验结果。  相似文献   
4.
根据箱式发射导轨与导弹,导弹与折叠翼的约束特点,应用动力学普遍定理和解除约束原理,创建了离箱扰动运动数学模型和拆卸叠翼展开过程计算数学模型,并将计算结果与飞行试验结果作了比较。  相似文献   
5.
大型飞机采用超临界机翼,并具有尺度大、飞行雷诺数高等特点,其研制中必须解决好高升阻比机翼、翼身组合体设计,推进系统/机体一体化设计,抖振特性、静气动弹性特性预测及超临界机翼流动控制等高速气动力问题。要解决这些关键气动力问题,必须进行一系列相关的大型高速风洞试验,以及解决相应的试验技术问题。  相似文献   
6.
文章介绍了不同后掠角三角翼在进行俯仰振荡时的动态压力特性,说明这种动态压力特性同三角翼的法向力的变化是密切相关的,试验研究揭示了流态、压力和气动力之间的密切关系。同时试验研究显示三角翼上翼面压力的动态变化曲线呈现出双峰形态;不同后掠角三角翼在动态试验过程中压力、法向力都具有相似特性。  相似文献   
7.
微型仿生扑翼飞行器是一种新概念的微型飞行器。但它不是对传统飞行器的简单几何缩小,当其特征尺度缩小到一定尺度时,系统内各种因素的相对影响将产生质的变化。针对微型仿生扑翼飞行器的机械扑翼系统,包括微驱动器、仿生翅、运动系统和动力源等,本文进行了尺度效应分析。分析结果表明,当尺寸减小时,仿生飞行更容易实现:通过共振能实现高频运动,微静电、电磁和压电驱动器都能满足扑翼系统功率需求。这为设计和研制微型仿生扑翼飞行器提供了理论依据。  相似文献   
8.
本文试验研究了一种可控环量帆翼,利用壁面切向喷流来移动帆翼圓尾缘分离点位置,可获得比普通帆翼更高的推力系数。文中介绍了展弦比为1的三维可控环量帆翼的试验研究。试验表明,这种可控环量帆翼在较小的喷流动量系数下,即可获得较大的升力增益。在喷流动量系数 C_μ=0.1时,零攻角升力系数已达0.9,在有攻角的情况下,升力系数最大可达2.2。同时,由于帆翼尾部壁面团向喷流的 Coanda 效应,这种可控环量帆翼的阻力亦较大。在喷流动量系数 C_μ=0.1时,零攻角阻力系数为0.3。文章对这种可控环量帆翼在船舶上的应用进行了讨论,并对其性能的进一步改进作了分析和探讨。  相似文献   
9.
随振动量级增加卫星结构频率下移的分析   总被引:6,自引:0,他引:6  
对卫星振动频率随量级增加而出现下降,即振动频率“漂移”的现象进行了初步分析。发现随振动量级的增加。结构的非线性表现突出。结构的刚度下降和阻尼增加,可认为主要是由蜂窝材料的非线性因素所致。  相似文献   
10.
76°/40°双三角翼前缘涡破裂及其控制实验研究   总被引:1,自引:0,他引:1  
流动显示结果表明,喷流能有效地推迟双三角翼前缘涡的破裂,且随着攻角的增大,前缘涡破裂位置逐渐推后,喷流极大地改善了大攻角情况下前缘涡的非对称破裂特性,能有效地克服可能出现的机翼的"摇滚"现象.另外,后缘喷流可以减弱乃至消除前缘涡混掺现象的发生,进而有利于飞行器的操纵.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号